direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: D42, C24⋊3C22, C42⋊8C22, C22.39C24, C23.42C23, C2.122+ 1+4, C4⋊2(C2×D4), (C4×D4)⋊14C2, C4⋊1D4⋊7C2, C22⋊2(C2×D4), C22≀C2⋊5C2, C4⋊D4⋊10C2, C4⋊C4⋊16C22, (C2×D4)⋊5C22, (C22×D4)⋊8C2, C22⋊C4⋊6C22, (C2×C4).26C23, C2.17(C22×D4), (C22×C4)⋊10C22, 2-Sylow(POmega+(4,7)), SmallGroup(64,226)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D42
G = < a,b,c,d | a4=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 389 in 214 conjugacy classes, 91 normal (7 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C24, C4×D4, C22≀C2, C4⋊D4, C4⋊1D4, C22×D4, D42
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, D42
Character table of D42
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ22 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 4)(2 3)(5 6)(7 8)(9 10)(11 12)(13 16)(14 15)
(1 10 6 13)(2 11 7 14)(3 12 8 15)(4 9 5 16)
(1 15)(2 16)(3 13)(4 14)(5 11)(6 12)(7 9)(8 10)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(13,16)(14,15), (1,10,6,13)(2,11,7,14)(3,12,8,15)(4,9,5,16), (1,15)(2,16)(3,13)(4,14)(5,11)(6,12)(7,9)(8,10)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(13,16)(14,15), (1,10,6,13)(2,11,7,14)(3,12,8,15)(4,9,5,16), (1,15)(2,16)(3,13)(4,14)(5,11)(6,12)(7,9)(8,10) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(13,16),(14,15)], [(1,10,6,13),(2,11,7,14),(3,12,8,15),(4,9,5,16)], [(1,15),(2,16),(3,13),(4,14),(5,11),(6,12),(7,9),(8,10)]])
G:=TransitiveGroup(16,109);
D42 is a maximal subgroup of
D4⋊D8 D4.D8 D4⋊7SD16 C42.45C23 C42.473C23 C22.70C25 C22.73C25 C22.77C25 C4⋊2+ 1+4 C22.87C25 C22.102C25 C22.103C25 C22.108C25 C42⋊C23 C22.123C25 C22.126C25 C22.131C25 C22.132C25 C22.135C25 C22.138C25 C22.147C25
D4p⋊D4: D8⋊9D4 D8⋊4D4 D12⋊19D4 D12⋊11D4 D20⋊19D4 D20⋊11D4 D28⋊19D4 D28⋊11D4 ...
C24⋊D2p: D4≀C2 C24⋊8D6 C24⋊4D10 C24⋊3D14 ...
C8⋊pD4⋊C2: D4⋊2SD16 SD16⋊D4 SD16⋊1D4 D4⋊4D8 C42.53C23 C42.474C23 ...
D42 is a maximal quotient of
C23.240C24 C24.215C23 C24.219C23 C23.308C24 C23.316C24 C23.318C24 C23.322C24 C23.324C24 C23.328C24 C23.333C24 C24⋊4Q8 C24.568C23 C24.269C23 C23.345C24 C23.349C24 C23.352C24 C24.276C23 C23.356C24 C24.282C23 C24.283C23 C23.364C24 C23.372C24 C23.391C24 C42⋊18D4 C42⋊20D4 C42⋊7Q8 C23.455C24 C23.568C24 C23.569C24 C23.570C24 C23.571C24 C23.572C24 C23.573C24 C23.574C24 C24.384C23 C23.576C24 C24.385C23 C23.578C24 C25⋊C22 C23.580C24 C23.581C24 C24.389C23 C23.583C24 Q16⋊4D4
D4p⋊D4: D8⋊9D4 D8⋊10D4 D8⋊4D4 D8⋊5D4 D8⋊12D4 D8⋊13D4 D8⋊11D4 D8⋊6D4 ...
C24⋊D2p: C24⋊7D4 C24⋊8D4 C24⋊8D6 C24⋊4D10 C24⋊3D14 ...
C8⋊pD4⋊C2: SD16⋊D4 SD16⋊7D4 Q16⋊10D4 SD16⋊1D4 SD16⋊2D4 Q16⋊5D4 SD16⋊11D4 Q16⋊12D4 ...
D4.pD4⋊C2: SD16⋊6D4 SD16⋊8D4 Q16⋊9D4 SD16⋊3D4 SD16⋊10D4 D8.13D4 D8○SD16 D8○Q16 ...
Matrix representation of D42 ►in GL4(ℤ) generated by
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | -1 | 0 |
0 | -1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | -1 | 0 | 0 |
-1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
G:=sub<GL(4,Integers())| [-1,0,0,0,0,-1,0,0,0,0,0,1,0,0,-1,0],[1,0,0,0,0,1,0,0,0,0,0,-1,0,0,-1,0],[0,1,0,0,-1,0,0,0,0,0,1,0,0,0,0,1],[0,-1,0,0,-1,0,0,0,0,0,-1,0,0,0,0,-1] >;
D42 in GAP, Magma, Sage, TeX
D_4^2
% in TeX
G:=Group("D4^2");
// GroupNames label
G:=SmallGroup(64,226);
// by ID
G=gap.SmallGroup(64,226);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,217,650,297]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export